3.3.53 \(\int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}} \, dx\) [253]

3.3.53.1 Optimal result
3.3.53.2 Mathematica [A] (verified)
3.3.53.3 Rubi [A] (verified)
3.3.53.4 Maple [A] (warning: unable to verify)
3.3.53.5 Fricas [C] (verification not implemented)
3.3.53.6 Sympy [F(-1)]
3.3.53.7 Maxima [F]
3.3.53.8 Giac [F]
3.3.53.9 Mupad [F(-1)]

3.3.53.1 Optimal result

Integrand size = 25, antiderivative size = 329 \[ \int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}} \, dx=\frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}+\frac {c^2 \arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right ) \sqrt {c \sec (a+b x)}}{\sqrt {2} b d^2 \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}}-\frac {c^2 \arctan \left (1+\sqrt {2} \sqrt {\tan (a+b x)}\right ) \sqrt {c \sec (a+b x)}}{\sqrt {2} b d^2 \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}}-\frac {c^2 \log \left (1-\sqrt {2} \sqrt {\tan (a+b x)}+\tan (a+b x)\right ) \sqrt {c \sec (a+b x)}}{2 \sqrt {2} b d^2 \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}}+\frac {c^2 \log \left (1+\sqrt {2} \sqrt {\tan (a+b x)}+\tan (a+b x)\right ) \sqrt {c \sec (a+b x)}}{2 \sqrt {2} b d^2 \sqrt {d \csc (a+b x)} \sqrt {\tan (a+b x)}} \]

output
2/3*c*(c*sec(b*x+a))^(3/2)/b/d/(d*csc(b*x+a))^(3/2)-1/2*c^2*arctan(-1+2^(1 
/2)*tan(b*x+a)^(1/2))*(c*sec(b*x+a))^(1/2)/b/d^2*2^(1/2)/(d*csc(b*x+a))^(1 
/2)/tan(b*x+a)^(1/2)-1/2*c^2*arctan(1+2^(1/2)*tan(b*x+a)^(1/2))*(c*sec(b*x 
+a))^(1/2)/b/d^2*2^(1/2)/(d*csc(b*x+a))^(1/2)/tan(b*x+a)^(1/2)-1/4*c^2*ln( 
1-2^(1/2)*tan(b*x+a)^(1/2)+tan(b*x+a))*(c*sec(b*x+a))^(1/2)/b/d^2*2^(1/2)/ 
(d*csc(b*x+a))^(1/2)/tan(b*x+a)^(1/2)+1/4*c^2*ln(1+2^(1/2)*tan(b*x+a)^(1/2 
)+tan(b*x+a))*(c*sec(b*x+a))^(1/2)/b/d^2*2^(1/2)/(d*csc(b*x+a))^(1/2)/tan( 
b*x+a)^(1/2)
 
3.3.53.2 Mathematica [A] (verified)

Time = 2.40 (sec) , antiderivative size = 143, normalized size of antiderivative = 0.43 \[ \int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}} \, dx=\frac {c \left (4+3 \sqrt {2} \arctan \left (\frac {-1+\sqrt {\cot ^2(a+b x)}}{\sqrt {2} \sqrt [4]{\cot ^2(a+b x)}}\right ) \cot ^2(a+b x)^{3/4}+3 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{\cot ^2(a+b x)}}{1+\sqrt {\cot ^2(a+b x)}}\right ) \cot ^2(a+b x)^{3/4}\right ) (c \sec (a+b x))^{3/2}}{6 b d (d \csc (a+b x))^{3/2}} \]

input
Integrate[(c*Sec[a + b*x])^(5/2)/(d*Csc[a + b*x])^(5/2),x]
 
output
(c*(4 + 3*Sqrt[2]*ArcTan[(-1 + Sqrt[Cot[a + b*x]^2])/(Sqrt[2]*(Cot[a + b*x 
]^2)^(1/4))]*(Cot[a + b*x]^2)^(3/4) + 3*Sqrt[2]*ArcTanh[(Sqrt[2]*(Cot[a + 
b*x]^2)^(1/4))/(1 + Sqrt[Cot[a + b*x]^2])]*(Cot[a + b*x]^2)^(3/4))*(c*Sec[ 
a + b*x])^(3/2))/(6*b*d*(d*Csc[a + b*x])^(3/2))
 
3.3.53.3 Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 213, normalized size of antiderivative = 0.65, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {3042, 3104, 3042, 3109, 3042, 3957, 266, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}}dx\)

\(\Big \downarrow \) 3104

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {c^2 \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}}dx}{d^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {c^2 \int \frac {\sqrt {c \sec (a+b x)}}{\sqrt {d \csc (a+b x)}}dx}{d^2}\)

\(\Big \downarrow \) 3109

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {c^2 \sqrt {c \sec (a+b x)} \int \sqrt {\tan (a+b x)}dx}{d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {c^2 \sqrt {c \sec (a+b x)} \int \sqrt {\tan (a+b x)}dx}{d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3957

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {c^2 \sqrt {c \sec (a+b x)} \int \frac {\sqrt {\tan (a+b x)}}{\tan ^2(a+b x)+1}d\tan (a+b x)}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {2 c^2 \sqrt {c \sec (a+b x)} \int \frac {\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {2 c^2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \int \frac {\tan (a+b x)+1}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}\right )}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {2 c^2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {1}{2} \int \frac {1}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}+\frac {1}{2} \int \frac {1}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}\right )-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}\right )}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {2 c^2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {\int \frac {1}{-\tan (a+b x)-1}d\left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (a+b x)-1}d\left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}\right )}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {2 c^2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )-\frac {1}{2} \int \frac {1-\tan (a+b x)}{\tan ^2(a+b x)+1}d\sqrt {\tan (a+b x)}\right )}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {2 c^2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (a+b x)}}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}+\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {2 c^2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (a+b x)}}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}-\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {2 c^2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (-\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (a+b x)}}{\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}}{2 \sqrt {2}}-\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (a+b x)}+1}{\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1}d\sqrt {\tan (a+b x)}\right )+\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )\right )}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 c (c \sec (a+b x))^{3/2}}{3 b d (d \csc (a+b x))^{3/2}}-\frac {2 c^2 \sqrt {c \sec (a+b x)} \left (\frac {1}{2} \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (a+b x)}\right )}{\sqrt {2}}\right )+\frac {1}{2} \left (\frac {\log \left (\tan (a+b x)-\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (a+b x)+\sqrt {2} \sqrt {\tan (a+b x)}+1\right )}{2 \sqrt {2}}\right )\right )}{b d^2 \sqrt {\tan (a+b x)} \sqrt {d \csc (a+b x)}}\)

input
Int[(c*Sec[a + b*x])^(5/2)/(d*Csc[a + b*x])^(5/2),x]
 
output
(2*c*(c*Sec[a + b*x])^(3/2))/(3*b*d*(d*Csc[a + b*x])^(3/2)) - (2*c^2*((-(A 
rcTan[1 - Sqrt[2]*Sqrt[Tan[a + b*x]]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[T 
an[a + b*x]]]/Sqrt[2])/2 + (Log[1 - Sqrt[2]*Sqrt[Tan[a + b*x]] + Tan[a + b 
*x]]/(2*Sqrt[2]) - Log[1 + Sqrt[2]*Sqrt[Tan[a + b*x]] + Tan[a + b*x]]/(2*S 
qrt[2]))/2)*Sqrt[c*Sec[a + b*x]])/(b*d^2*Sqrt[d*Csc[a + b*x]]*Sqrt[Tan[a + 
 b*x]])
 

3.3.53.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3104
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[b*(a*Csc[e + f*x])^(m + 1)*((b*Sec[e + f*x])^(n - 1)/ 
(f*a*(n - 1))), x] + Simp[b^2*((m + 1)/(a^2*(n - 1)))   Int[(a*Csc[e + f*x] 
)^(m + 2)*(b*Sec[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ 
[n, 1] && LtQ[m, -1] && IntegersQ[2*m, 2*n]
 

rule 3109
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(a*Csc[e + f*x])^m*((b*Sec[e + f*x])^n/Tan[e + f*x]^n 
)   Int[Tan[e + f*x]^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] &&  !Integer 
Q[n] && EqQ[m + n, 0]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
3.3.53.4 Maple [A] (warning: unable to verify)

Time = 8.80 (sec) , antiderivative size = 487, normalized size of antiderivative = 1.48

method result size
default \(-\frac {\sqrt {2}\, c^{2} \sqrt {c \sec \left (b x +a \right )}\, \left (6 \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \arctan \left (\frac {\sin \left (b x +a \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}+\cos \left (b x +a \right )-1}{\cos \left (b x +a \right )-1}\right ) \sin \left (b x +a \right )-6 \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \arctan \left (\frac {-\sin \left (b x +a \right ) \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}+\cos \left (b x +a \right )-1}{\cos \left (b x +a \right )-1}\right ) \sin \left (b x +a \right )-3 \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \ln \left (2 \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \cot \left (b x +a \right )+2 \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \csc \left (b x +a \right )-2 \cot \left (b x +a \right )+2\right ) \sin \left (b x +a \right )+3 \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \ln \left (-2 \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \cot \left (b x +a \right )-2 \sqrt {2}\, \sqrt {-\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{\left (\cos \left (b x +a \right )+1\right )^{2}}}\, \csc \left (b x +a \right )-2 \cot \left (b x +a \right )+2\right ) \sin \left (b x +a \right )+4 \sqrt {2}\, \tan \left (b x +a \right )-4 \sqrt {2}\, \sin \left (b x +a \right )\right )}{12 b \left (\cos \left (b x +a \right )-1\right ) d^{2} \sqrt {d \csc \left (b x +a \right )}}\) \(487\)

input
int((c*sec(b*x+a))^(5/2)/(d*csc(b*x+a))^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/12/b*2^(1/2)*c^2*(c*sec(b*x+a))^(1/2)*(6*(-cos(b*x+a)*sin(b*x+a)/(cos(b 
*x+a)+1)^2)^(1/2)*arctan((sin(b*x+a)*2^(1/2)*(-cos(b*x+a)*sin(b*x+a)/(cos( 
b*x+a)+1)^2)^(1/2)+cos(b*x+a)-1)/(cos(b*x+a)-1))*sin(b*x+a)-6*(-cos(b*x+a) 
*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*arctan((-sin(b*x+a)*2^(1/2)*(-cos(b*x+ 
a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)+cos(b*x+a)-1)/(cos(b*x+a)-1))*sin(b* 
x+a)-3*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*ln(2*2^(1/2)*(-cos( 
b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*cot(b*x+a)+2*2^(1/2)*(-cos(b*x+a 
)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*csc(b*x+a)-2*cot(b*x+a)+2)*sin(b*x+a) 
+3*(-cos(b*x+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*ln(-2*2^(1/2)*(-cos(b*x 
+a)*sin(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*cot(b*x+a)-2*2^(1/2)*(-cos(b*x+a)*s 
in(b*x+a)/(cos(b*x+a)+1)^2)^(1/2)*csc(b*x+a)-2*cot(b*x+a)+2)*sin(b*x+a)+4* 
2^(1/2)*tan(b*x+a)-4*2^(1/2)*sin(b*x+a))/(cos(b*x+a)-1)/d^2/(d*csc(b*x+a)) 
^(1/2)
 
3.3.53.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.67 (sec) , antiderivative size = 1371, normalized size of antiderivative = 4.17 \[ \int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate((c*sec(b*x+a))^(5/2)/(d*csc(b*x+a))^(5/2),x, algorithm="fricas")
 
output
1/24*(3*b*d^3*(-c^10/(b^4*d^10))^(1/4)*cos(b*x + a)*log(2*b^2*c^3*d^5*sqrt 
(-c^10/(b^4*d^10))*cos(b*x + a)*sin(b*x + a) + 2*c^8*cos(b*x + a)^2 - c^8 
+ 2*(b*c^5*d^2*(-c^10/(b^4*d^10))^(1/4)*cos(b*x + a)^2*sin(b*x + a) - (b^3 
*d^7*cos(b*x + a)^3 - b^3*d^7*cos(b*x + a))*(-c^10/(b^4*d^10))^(3/4))*sqrt 
(c/cos(b*x + a))*sqrt(d/sin(b*x + a))) - 3*b*d^3*(-c^10/(b^4*d^10))^(1/4)* 
cos(b*x + a)*log(2*b^2*c^3*d^5*sqrt(-c^10/(b^4*d^10))*cos(b*x + a)*sin(b*x 
 + a) + 2*c^8*cos(b*x + a)^2 - c^8 - 2*(b*c^5*d^2*(-c^10/(b^4*d^10))^(1/4) 
*cos(b*x + a)^2*sin(b*x + a) - (b^3*d^7*cos(b*x + a)^3 - b^3*d^7*cos(b*x + 
 a))*(-c^10/(b^4*d^10))^(3/4))*sqrt(c/cos(b*x + a))*sqrt(d/sin(b*x + a))) 
- 3*I*b*d^3*(-c^10/(b^4*d^10))^(1/4)*cos(b*x + a)*log(-2*b^2*c^3*d^5*sqrt( 
-c^10/(b^4*d^10))*cos(b*x + a)*sin(b*x + a) + 2*c^8*cos(b*x + a)^2 - c^8 - 
 2*(I*b*c^5*d^2*(-c^10/(b^4*d^10))^(1/4)*cos(b*x + a)^2*sin(b*x + a) + (I* 
b^3*d^7*cos(b*x + a)^3 - I*b^3*d^7*cos(b*x + a))*(-c^10/(b^4*d^10))^(3/4)) 
*sqrt(c/cos(b*x + a))*sqrt(d/sin(b*x + a))) + 3*I*b*d^3*(-c^10/(b^4*d^10)) 
^(1/4)*cos(b*x + a)*log(-2*b^2*c^3*d^5*sqrt(-c^10/(b^4*d^10))*cos(b*x + a) 
*sin(b*x + a) + 2*c^8*cos(b*x + a)^2 - c^8 - 2*(-I*b*c^5*d^2*(-c^10/(b^4*d 
^10))^(1/4)*cos(b*x + a)^2*sin(b*x + a) + (-I*b^3*d^7*cos(b*x + a)^3 + I*b 
^3*d^7*cos(b*x + a))*(-c^10/(b^4*d^10))^(3/4))*sqrt(c/cos(b*x + a))*sqrt(d 
/sin(b*x + a))) - 3*b*d^3*(-c^10/(b^4*d^10))^(1/4)*cos(b*x + a)*log(-c^8 + 
 2*(b*c^5*d^2*(-c^10/(b^4*d^10))^(1/4)*cos(b*x + a)^2*sin(b*x + a) + (b...
 
3.3.53.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate((c*sec(b*x+a))**(5/2)/(d*csc(b*x+a))**(5/2),x)
 
output
Timed out
 
3.3.53.7 Maxima [F]

\[ \int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}} \, dx=\int { \frac {\left (c \sec \left (b x + a\right )\right )^{\frac {5}{2}}}{\left (d \csc \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((c*sec(b*x+a))^(5/2)/(d*csc(b*x+a))^(5/2),x, algorithm="maxima")
 
output
integrate((c*sec(b*x + a))^(5/2)/(d*csc(b*x + a))^(5/2), x)
 
3.3.53.8 Giac [F]

\[ \int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}} \, dx=\int { \frac {\left (c \sec \left (b x + a\right )\right )^{\frac {5}{2}}}{\left (d \csc \left (b x + a\right )\right )^{\frac {5}{2}}} \,d x } \]

input
integrate((c*sec(b*x+a))^(5/2)/(d*csc(b*x+a))^(5/2),x, algorithm="giac")
 
output
integrate((c*sec(b*x + a))^(5/2)/(d*csc(b*x + a))^(5/2), x)
 
3.3.53.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c \sec (a+b x))^{5/2}}{(d \csc (a+b x))^{5/2}} \, dx=\int \frac {{\left (\frac {c}{\cos \left (a+b\,x\right )}\right )}^{5/2}}{{\left (\frac {d}{\sin \left (a+b\,x\right )}\right )}^{5/2}} \,d x \]

input
int((c/cos(a + b*x))^(5/2)/(d/sin(a + b*x))^(5/2),x)
 
output
int((c/cos(a + b*x))^(5/2)/(d/sin(a + b*x))^(5/2), x)